3.130 \(\int x \cosh ^{-1}(a x)^n \, dx\)

Optimal. Leaf size=59 \[ \frac {2^{-n-3} \cosh ^{-1}(a x)^n \left (-\cosh ^{-1}(a x)\right )^{-n} \Gamma \left (n+1,-2 \cosh ^{-1}(a x)\right )}{a^2}+\frac {2^{-n-3} \Gamma \left (n+1,2 \cosh ^{-1}(a x)\right )}{a^2} \]

[Out]

2^(-3-n)*arccosh(a*x)^n*GAMMA(1+n,-2*arccosh(a*x))/a^2/((-arccosh(a*x))^n)+2^(-3-n)*GAMMA(1+n,2*arccosh(a*x))/
a^2

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {5670, 5448, 12, 3308, 2181} \[ \frac {2^{-n-3} \cosh ^{-1}(a x)^n \left (-\cosh ^{-1}(a x)\right )^{-n} \text {Gamma}\left (n+1,-2 \cosh ^{-1}(a x)\right )}{a^2}+\frac {2^{-n-3} \text {Gamma}\left (n+1,2 \cosh ^{-1}(a x)\right )}{a^2} \]

Antiderivative was successfully verified.

[In]

Int[x*ArcCosh[a*x]^n,x]

[Out]

(2^(-3 - n)*ArcCosh[a*x]^n*Gamma[1 + n, -2*ArcCosh[a*x]])/(a^2*(-ArcCosh[a*x])^n) + (2^(-3 - n)*Gamma[1 + n, 2
*ArcCosh[a*x]])/a^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rubi steps

\begin {align*} \int x \cosh ^{-1}(a x)^n \, dx &=\frac {\operatorname {Subst}\left (\int x^n \cosh (x) \sinh (x) \, dx,x,\cosh ^{-1}(a x)\right )}{a^2}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{2} x^n \sinh (2 x) \, dx,x,\cosh ^{-1}(a x)\right )}{a^2}\\ &=\frac {\operatorname {Subst}\left (\int x^n \sinh (2 x) \, dx,x,\cosh ^{-1}(a x)\right )}{2 a^2}\\ &=-\frac {\operatorname {Subst}\left (\int e^{-2 x} x^n \, dx,x,\cosh ^{-1}(a x)\right )}{4 a^2}+\frac {\operatorname {Subst}\left (\int e^{2 x} x^n \, dx,x,\cosh ^{-1}(a x)\right )}{4 a^2}\\ &=\frac {2^{-3-n} \left (-\cosh ^{-1}(a x)\right )^{-n} \cosh ^{-1}(a x)^n \Gamma \left (1+n,-2 \cosh ^{-1}(a x)\right )}{a^2}+\frac {2^{-3-n} \Gamma \left (1+n,2 \cosh ^{-1}(a x)\right )}{a^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 58, normalized size = 0.98 \[ \frac {2^{-n-3} \left (-\cosh ^{-1}(a x)\right )^{-n} \left (\left (-\cosh ^{-1}(a x)\right )^n \Gamma \left (n+1,2 \cosh ^{-1}(a x)\right )+\cosh ^{-1}(a x)^n \Gamma \left (n+1,-2 \cosh ^{-1}(a x)\right )\right )}{a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*ArcCosh[a*x]^n,x]

[Out]

(2^(-3 - n)*(ArcCosh[a*x]^n*Gamma[1 + n, -2*ArcCosh[a*x]] + (-ArcCosh[a*x])^n*Gamma[1 + n, 2*ArcCosh[a*x]]))/(
a^2*(-ArcCosh[a*x])^n)

________________________________________________________________________________________

fricas [F]  time = 0.84, size = 0, normalized size = 0.00 \[ {\rm integral}\left (x \operatorname {arcosh}\left (a x\right )^{n}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^n,x, algorithm="fricas")

[Out]

integral(x*arccosh(a*x)^n, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \operatorname {arcosh}\left (a x\right )^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^n,x, algorithm="giac")

[Out]

integrate(x*arccosh(a*x)^n, x)

________________________________________________________________________________________

maple [C]  time = 0.09, size = 38, normalized size = 0.64 \[ \frac {\mathrm {arccosh}\left (a x \right )^{2+n} \hypergeom \left (\left [1+\frac {n}{2}\right ], \left [\frac {3}{2}, 2+\frac {n}{2}\right ], \mathrm {arccosh}\left (a x \right )^{2}\right )}{a^{2} \left (2+n \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arccosh(a*x)^n,x)

[Out]

1/a^2/(2+n)*arccosh(a*x)^(2+n)*hypergeom([1+1/2*n],[3/2,2+1/2*n],arccosh(a*x)^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \operatorname {arcosh}\left (a x\right )^{n}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arccosh(a*x)^n,x, algorithm="maxima")

[Out]

integrate(x*arccosh(a*x)^n, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int x\,{\mathrm {acosh}\left (a\,x\right )}^n \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*acosh(a*x)^n,x)

[Out]

int(x*acosh(a*x)^n, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \operatorname {acosh}^{n}{\left (a x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*acosh(a*x)**n,x)

[Out]

Integral(x*acosh(a*x)**n, x)

________________________________________________________________________________________